MTH 507 Midterm Solutions

1. Let X be a path connected, locally path connected, and semilocally
simply connected space. Let Hy and H; be subgroups of 7 (X, z¢) (for
some zg € X) such that Hy < Hy. Let p; : Xy, — X (for i = 0,1) be
covering spaces corresponding to the subgroups H;. Prove that there
is a covering space f : Xy, — Xp, such that p; o f = po.

Solution. Choose Ty, 7 € p~*(xg) so that p; : (Xp,, ;) — (X, z0) and
pi(Xm,, ;) = H; for i =0, 1. Since Hy < Hy, by the Lifting Criterion,
there exists a lift f : Xy, — Xp, of pg such that p; o f = pg. It remains
to show that f: Xy, — Xpg, is a covering space.

Let y € Xp,, and let U be a path-connected neighbourhood of z =
p1(y) that is evenly covered by both py and p;. Let V. C Xy, be
the slice of p;'(U) that contains y. Denote the slices of py'(U) by
{V!': 2 € p;*(z)}. Let C denote the subcollection {V! : z € f~(y)}
of py ' (U). Every slice V. is mapped by f into a single slice of p;*(U),
as these are path-connected. Also, since f(2) € p;'(y), f(V/) C V iff
f(2) = y. Hence f~*(V) is the union of the slices in C.

Finally, we have that for V! € C, (pi|v) " o (polv:) = flv,. Hence flv
is a homeomorphism, and V' is a evenly covered neighborhood of .

2. A homomorphism between two covering spaces p; : 3(7 — X and
py i Xo— X isamap f : X; — Xy sothat py =pyo f.

(a) Classify all the covering spaces of S up to isomorphism.

(b) Find all homomorphisms between these covering spaces.

Solution. (a) Let zp = (1,0), then by Classification of Covering
Spaces, the basepoint-preserving isomorphism classes of covering spaces
of (S',z0) correspond to the subgroups of m1(S', zy) = Z. Each non-
trivial subgroup mZ < 7 corresponds to the covering space p,, :
(S, 7o) — (S1,20), where p,,(2) = 2™ and 7 is an m'* root of unity
in S' € C. The trivial subgroup corresponds to the universal cover
p: R — S given by p(s) = '),

(b) Let p,, ¢ (S, 29) — (S*, x0) and p,, : (S, 77) — (S, xp) be covering
spaces. Any homomorphism f : (S, 7y) — (S',21) must induce a
homomorphism f, : Z,, — Z,. Such a homomorphism exists iff m | n,



and when m | n, f, is the natural injection Z,, < Z,,. There can both
be no homomorphism between universal cover p : R — S* to any of
the finite-sheeted covering spaces mentioned above, as its fundamental
group is trivial. Finally any homomorphism f from the universal cover
to itself should be an isomorphism (by the Lifting Criterion) which
satisfies po f = p. Since p(s) = €!®™), f has to be of the form s — s+k,
where k is a integer.

. Let (X, z0) and (Y, ) be topological spaces.

(a) Show that 7 (X XY, (%, y0)) = m1 (X, z0) X m1(Y,90). [Hint: Use
the projection maps p; : X xY — X and pp: X XY — Y]

(b) Compute the fundamental group of the solid torus.

Solution. (a) Please see Theorem 60.1 (Page 371 ) in Munkres.
(b) The solid torus X ~ D? x S'. Hence m(X) =~ m(D?) x m(S'),

from part(a). Since D? is simply connected, we have that 7, (X) = Z.
. Find all 2-sheeted covering spaces of the torus S* x S! up to isomor-
phism.

Solution. By the Classification of Covering Spaces, the isomorphism
class of any 2-sheeted covering space will correspond to a subgroup to
m (St x S1) = Z? of index 2. The two obvious nontrivial subgroups
are 27 x Z and Z x 27, which correspond to the coverings 22 x w :
Stx St — St x Stand 2z x w?: 81 x St — St x St respectively.
There is only one other nontrivial subgroup. Before we describe this
subgroup, note that any such subgroup will be isomorphic to the ker-
nel of a homomorphism Z? — Z,. The third nontrivial subgroup is
isomorphic to the kernel of the homomorphism that maps both of the
standard generators of Z* to 1 € Z,. Explicitly, this subgroup can be
described as {(z,y) € Z*|x +y (mod 2) = 0}. Can you describe the
covering space this subgroup corresponds to?

. Consider the real projective n-space RP" obtained by identifying each
point z € S™ with its antipode —z.

(a) Compute its fundamental group.

(b) Find all its covering spaces up to isomorphism.



(c) Show that every map from RP? — S is nullhomotopic.

Solution. (a) We know from class that the quotient map ¢ : S™ — RP"
for (n > 2) is a 2-fold universal covering space. (Note that we are
assuming here that S™ is simply connected.) Therefore, the lifting
correspondence is bijective, and consequently, 7 (RP™) is a group that
has exactly 2 elements. Therefore, m (RP™) = Z,.

(b) Up to isomorphism, any covering space of RP™ will correspond to
a subgroup to Zs. As the only subgroups of Z, are itself and the trivial
group, they will correspond to the covering spaces of id : RP? —
RP? and ¢ : S® — RP" (which in this case is the universal cover)
respectively.

(c) Suppose that f: RP? — S! is a continuous map. Then it induces
a homomorphism h, : m(RP?) & Z; — m(S') & Z, which has be
trivial. By the Lifting Criterion, f lifts to a map fv: RP? — R such
that po f = f, where p : R — S is the standard universal covering.
Since R is contractible, f has be homotopic (via some H) to a constant
map. Hence po H is a homotopy from f to a constant map.

. Let r : S* — S be a reflection of the circle (e.g. (z,y) — (—z,y) in
the plane). The Klein bottle K is the quotient space of [0, 1] x S* under
the following equivalence relation: (0, z) ~ (1,7(z)) for all z € S*, and
(t,z) is not equivalent to anything except itself, for t = 0, 1.

(a) Explain why K is compact.

(b) Let C; C K be (the image of) the circle 1 x S' | and let Cy C K be

a small embedded circle inside (%, %) x S1. There is a continuous
map g : K — R?® such that g|x_¢, and g|x_c, are injective.
Assuming g exists as described, use Urysohn’s Lemma to construct

a continuous map of K into R* = R?® x R, which is an imbedding.

Solution. (a) Since the quotient map is a continuous map, and [0, 1] X
S! is compact, it follows that K has to be compact.

(b) Since K is Hausdorff and C;,Cy = S, they have to be closed
sets in K. As K is also compact, it is a normal space. By Urysohn’s
Lemma, we obtain a function f : K — [0, 1] such that f(Cy) = {0} and
f(Cy) = {1}. Composing f with the inclusion [0, 1] < R, we obtain a
function f’: K — R such that f'(Cy) = {0} and f'(Cy) = {1}.
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Now define h : K — R3 x R by h(z) = (g(z), f(z)). This is map is
continuous, as it has continuous coordinate functions. Consider two
distinct points x,y € K. If both x and y are in C; and C5 then
f'(x) # f'(y), and so h(z) # h(y). Without loss of generality, if we
assume that C} does not contain = or y, then x,y € K\ Cy, and g is
injective on this subset. Hence g(x) # ¢g(y), and so h(x) # h(y).

Finally, h is a continuous and injective map from a compact space to
a Hausdorff space. This implies that h has to be an imbedding.

. Let h,k: (X, z9) — (Y, y0) be continuous maps.

(a) If h ~ k(via H) such that H(zo,t) = yo for all ¢, then show that
he = k..

(b) Using (a) show that the inclusion j : S — R"™\ {0} induces
an isomorphism of fundamental groups. [Hint: Use the natural
retraction map r : R"™1\ {0} — S"].

Solution. Please see Lemma 58.2 and Theorem 58.2 (Page 360) from
Munkres.

. [Bonus] Let f : (S',zq) — (S*,z1) be a continuous map. Then the
induced homomorphism f, : m(S', 20)(2 Z) — m (St z1)(X Z) is
completely determined by the integer d given by f.([ag]) = d[a1], where
(] is a generator (S, x;) (for i = 0,1) that represents 1 € Z. This
integer d is called the degree of f (denoted by deg(f)).

(a) Show that if f ~ g, then deg(f) = deg(g).

(b) Show that if f is a homeomorphism, then deg(f) = +1. In par-
ticular, show that the deg(a) = —1, when a is the antipodal map.

Solution. (a) Note that deg(f) is independent of basepoint, for if we
choose a different basepoint yg € X with f(yo) = 31, then there exists
isomorphisms @& : m (X, 20) — m (Y, y0) and 8 : m (X, 1) — (Y, 1)
such that f, oa = Bo f.. Since any continuous map f : St — S!
has to be a loop, it follows from 7(a) that f. = g., and consequently
deg(f) = deg(g).

(b) To prove (b), we show first that deg(fog) = deg(f)-deg(g). But this
follows directly from the fact that (fog). = f.0g.. Also, by definition



deg(id) = 1, as it induces the identity homomorphism. Therefore, if f is
a homeomorphism, then deg(f)-deg(f~1) = 1. As deg(f) is an integer,
we have that deg(f) = £1. Finally, since a is a homeormorphism that
is non-homotopic to f, we conclude that deg(a) = —1.



