
MTH 507 Midterm Solutions

1. Let X be a path connected, locally path connected, and semilocally
simply connected space. Let H0 and H1 be subgroups of π1(X, x0) (for
some x0 ∈ X) such that H0 ≤ H1. Let pi : XHi

→ X (for i = 0, 1) be
covering spaces corresponding to the subgroups Hi. Prove that there
is a covering space f : XH0 → XH1 such that p1 ◦ f = p0.

Solution. Choose x̃0, x̃1 ∈ p−1(x0) so that pi : (XHi
, x̃i)→ (X, x0) and

pi∗(XHi
, x̃i) = Hi for i = 0, 1. Since H0 ≤ H1, by the Lifting Criterion,

there exists a lift f : XH0 → XH1 of p0 such that p1 ◦f = p0. It remains
to show that f : XH0 → XH1 is a covering space.

Let y ∈ XH1 , and let U be a path-connected neighbourhood of x =
p1(y) that is evenly covered by both p0 and p1. Let V ⊂ XH1 be
the slice of p−11 (U) that contains y. Denote the slices of p−10 (U) by
{V ′z : z ∈ p−10 (x)}. Let C denote the subcollection {V ′z : z ∈ f−1(y)}
of p−10 (U). Every slice Vz is mapped by f into a single slice of p−11 (U),
as these are path-connected. Also, since f(z) ∈ p−11 (y), f(V ′z ) ⊂ V iff
f(z) = y. Hence f−1(V ) is the union of the slices in C.

Finally, we have that for V ′z ∈ C, (p1|V )−1 ◦ (p0|V ′
z
) = f |V ′

z
. Hence f |V ′

z

is a homeomorphism, and V is a evenly covered neighborhood of y.

2. A homomorphism between two covering spaces p1 : X̃1 → X and
p2 : X̃2 → X is a map f : X̃1 → X̃2 so that p1 = p2 ◦ f .

(a) Classify all the covering spaces of S1 up to isomorphism.

(b) Find all homomorphisms between these covering spaces.

Solution. (a) Let x0 = (1, 0), then by Classification of Covering
Spaces, the basepoint-preserving isomorphism classes of covering spaces
of (S1, x0) correspond to the subgroups of π1(S

1, x0) ∼= Z. Each non-
trivial subgroup mZ ≤ Z corresponds to the covering space pm :
(S1, x̃0) → (S1, x0), where pm(z) = zm and x̃0 is an mth root of unity
in S1 ⊂ C. The trivial subgroup corresponds to the universal cover
p : R→ S1 given by p(s) = ei(2πs).

(b) Let pm : (S1, x̃0)→ (S1, x0) and pn : (S1, x̃1)→ (S1, x0) be covering
spaces. Any homomorphism f : (S1, x̃0) → (S1, x̃1) must induce a
homomorphism f∗ : Zm → Zn. Such a homomorphism exists iff m | n,
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and when m | n, f∗ is the natural injection Zm ↪→ Zn. There can both
be no homomorphism between universal cover p : R → S1 to any of
the finite-sheeted covering spaces mentioned above, as its fundamental
group is trivial. Finally any homomorphism f from the universal cover
to itself should be an isomorphism (by the Lifting Criterion) which
satisfies p◦f = p. Since p(s) = ei(2πs), f has to be of the form s 7→ s+k,
where k is a integer.

3. Let (X, x0) and (Y, y0) be topological spaces.

(a) Show that π1(X × Y, (x0, y0)) ∼= π1(X, x0)× π1(Y, y0). [Hint: Use
the projection maps p1 : X × Y → X and p2 : X × Y → Y .]

(b) Compute the fundamental group of the solid torus.

Solution. (a) Please see Theorem 60.1 (Page 371 ) in Munkres.

(b) The solid torus X ≈ D2 × S1. Hence π1(X) ≈ π1(D
2) × π1(S1),

from part(a). Since D2 is simply connected, we have that π1(X) ∼= Z.

4. Find all 2-sheeted covering spaces of the torus S1 × S1 up to isomor-
phism.

Solution. By the Classification of Covering Spaces, the isomorphism
class of any 2-sheeted covering space will correspond to a subgroup to
π1(S

1 × S1) ∼= Z2 of index 2. The two obvious nontrivial subgroups
are 2Z × Z and Z × 2Z, which correspond to the coverings z2 × w :
S1 × S1 → S1 × S1 and z × w2 : S1 × S1 → S1 × S1 respectively.

There is only one other nontrivial subgroup. Before we describe this
subgroup, note that any such subgroup will be isomorphic to the ker-
nel of a homomorphism Z2 → Z2. The third nontrivial subgroup is
isomorphic to the kernel of the homomorphism that maps both of the
standard generators of Z2 to 1 ∈ Z2. Explicitly, this subgroup can be
described as {(x, y) ∈ Z2 |x + y (mod 2) = 0}. Can you describe the
covering space this subgroup corresponds to?

5. Consider the real projective n-space RP n obtained by identifying each
point x ∈ Sn with its antipode −x.

(a) Compute its fundamental group.

(b) Find all its covering spaces up to isomorphism.
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(c) Show that every map from RP 2 → S1 is nullhomotopic.

Solution. (a) We know from class that the quotient map q : Sn → RP n

for (n ≥ 2) is a 2-fold universal covering space. (Note that we are
assuming here that Sn is simply connected.) Therefore, the lifting
correspondence is bijective, and consequently, π1(RP n) is a group that
has exactly 2 elements. Therefore, π1(RP n) ∼= Z2.

(b) Up to isomorphism, any covering space of RP n will correspond to
a subgroup to Z2. As the only subgroups of Z2 are itself and the trivial
group, they will correspond to the covering spaces of id : RP 2 →
RP 2 and q : Sn → RP n (which in this case is the universal cover)
respectively.

(c) Suppose that f : RP 2 → S1 is a continuous map. Then it induces
a homomorphism h∗ : π1(RP 2) ∼= Z2 → π1(S

1) ∼= Z, which has be

trivial. By the Lifting Criterion, f lifts to a map f̃ : RP 2 → R such
that p ◦ f̃ = f , where p : R → S1 is the standard universal covering.
Since R is contractible, f has be homotopic (via some H) to a constant
map. Hence p ◦H is a homotopy from f to a constant map.

6. Let r : S1 → S1 be a reflection of the circle (e.g. (x, y) → (−x, y) in
the plane). The Klein bottle K is the quotient space of [0, 1]×S1 under
the following equivalence relation: (0, z) ∼ (1, r(z)) for all z ∈ S1, and
(t, z) is not equivalent to anything except itself, for t = 0, 1.

(a) Explain why K is compact.

(b) Let C1 ⊂ K be (the image of) the circle 1×S1 , and let C2 ⊂ K be
a small embedded circle inside (1

2
, 3
2
)× S1. There is a continuous

map g : K → R3 such that g|K−C1 and g|K−C2 are injective.
Assuming g exists as described, use Urysohn’s Lemma to construct
a continuous map of K into R4 = R3×R, which is an imbedding.

Solution. (a) Since the quotient map is a continuous map, and [0, 1]×
S1 is compact, it follows that K has to be compact.

(b) Since K is Hausdorff and C1, C2 ≈ S1, they have to be closed
sets in K. As K is also compact, it is a normal space. By Urysohn’s
Lemma, we obtain a function f : K → [0, 1] such that f(C1) = {0} and
f(C2) = {1}. Composing f with the inclusion [0, 1] ↪→ R, we obtain a
function f ′ : K → R such that f ′(C1) = {0} and f ′(C2) = {1}.
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Now define h : K → R3 × R by h(x) = (g(x), f ′(x)). This is map is
continuous, as it has continuous coordinate functions. Consider two
distinct points x, y ∈ K. If both x and y are in C1 and C2 then
f ′(x) 6= f ′(y), and so h(x) 6= h(y). Without loss of generality, if we
assume that C1 does not contain x or y, then x, y ∈ K \ C1, and g is
injective on this subset. Hence g(x) 6= g(y), and so h(x) 6= h(y).

Finally, h is a continuous and injective map from a compact space to
a Hausdorff space. This implies that h has to be an imbedding.

7. Let h, k : (X, x0)→ (Y, y0) be continuous maps.

(a) If h ' k(viaH) such that H(x0, t) = y0 for all t, then show that
h∗ = k∗.

(b) Using (a) show that the inclusion j : Sn → Rn+1 \ {0} induces
an isomorphism of fundamental groups. [Hint: Use the natural
retraction map r : Rn+1 \ {0} → Sn].

Solution. Please see Lemma 58.2 and Theorem 58.2 (Page 360) from
Munkres.

8. [Bonus] Let f : (S1, x0) → (S1, x1) be a continuous map. Then the
induced homomorphism f∗ : π1(S

1, x0)(∼= Z) → π1(S
1, x1)(∼= Z) is

completely determined by the integer d given by f∗([α0]) = d[α1], where
[αi] is a generator π1(S

1, xi) (for i = 0, 1) that represents 1 ∈ Z. This
integer d is called the degree of f (denoted by deg(f)).

(a) Show that if f ' g, then deg(f) = deg(g).

(b) Show that if f is a homeomorphism, then deg(f) = ±1. In par-
ticular, show that the deg(a) = −1, when a is the antipodal map.

Solution. (a) Note that deg(f) is independent of basepoint, for if we
choose a different basepoint y0 ∈ X with f(y0) = y1, then there exists
isomorphisms α̂ : π1(X, x0) → π1(Y, y0) and β̂ : π1(X, x1) → π1(Y, y1)
such that f∗ ◦ α̂ = β̂ ◦ f∗. Since any continuous map f : S1 → S1

has to be a loop, it follows from 7(a) that f∗ = g∗, and consequently
deg(f) = deg(g).

(b) To prove (b), we show first that deg(f◦g) = deg(f)·deg(g). But this
follows directly from the fact that (f ◦ g)∗ = f∗ ◦ g∗. Also, by definition
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deg(id) = 1, as it induces the identity homomorphism. Therefore, if f is
a homeomorphism, then deg(f) ·deg(f−1) = 1. As deg(f) is an integer,
we have that deg(f) = ±1. Finally, since a is a homeormorphism that
is non-homotopic to f , we conclude that deg(a) = −1.
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