MTH 507 Midterm Solutions

1. Let X be a path connected, locally path connected, and semilocally simply connected space. Let H_{0} and H_{1} be subgroups of $\pi_{1}\left(X, x_{0}\right)$ (for some $x_{0} \in X$) such that $H_{0} \leq H_{1}$. Let $p_{i}: X_{H_{i}} \rightarrow X$ (for $i=0,1$) be covering spaces corresponding to the subgroups H_{i}. Prove that there is a covering space $f: X_{H_{0}} \rightarrow X_{H_{1}}$ such that $p_{1} \circ f=p_{0}$.
Solution. Choose $\widetilde{x_{0}}, \widetilde{x_{1}} \in p^{-1}\left(x_{0}\right)$ so that $p_{i}:\left(X_{H_{i}}, \widetilde{x_{i}}\right) \rightarrow\left(X, x_{0}\right)$ and $p_{i_{*}}\left(X_{H_{i}}, \widetilde{x_{i}}\right)=H_{i}$ for $i=0,1$. Since $H_{0} \leq H_{1}$, by the Lifting Criterion, there exists a lift $f: X_{H_{0}} \rightarrow X_{H_{1}}$ of p_{0} such that $p_{1} \circ f=p_{0}$. It remains to show that $f: X_{H_{0}} \rightarrow X_{H_{1}}$ is a covering space.
Let $y \in X_{H_{1}}$, and let U be a path-connected neighbourhood of $x=$ $p_{1}(y)$ that is evenly covered by both p_{0} and p_{1}. Let $V \subset X_{H_{1}}$ be the slice of $p_{1}^{-1}(U)$ that contains y. Denote the slices of $p_{0}^{-1}(U)$ by $\left\{V_{z}^{\prime}: z \in p_{0}^{-1}(x)\right\}$. Let C denote the subcollection $\left\{V_{z}^{\prime}: z \in f^{-1}(y)\right\}$ of $p_{0}^{-1}(U)$. Every slice V_{z} is mapped by f into a single slice of $p_{1}^{-1}(U)$, as these are path-connected. Also, since $f(z) \in p_{1}^{-1}(y), f\left(V_{z}^{\prime}\right) \subset V$ iff $f(z)=y$. Hence $f^{-1}(V)$ is the union of the slices in C.
Finally, we have that for $V_{z}^{\prime} \in C,\left(\left.p_{1}\right|_{V}\right)^{-1} \circ\left(\left.p_{0}\right|_{V_{z}^{\prime}}\right)=\left.f\right|_{V_{z}^{\prime}}$. Hence $\left.f\right|_{V_{z}^{\prime}}$ is a homeomorphism, and V is a evenly covered neighborhood of y.
2. A homomorphism between two covering spaces $p_{1}: \widetilde{X_{1}} \rightarrow X$ and $p_{2}: \widetilde{X_{2}} \rightarrow X$ is a map $f: \widetilde{X_{1}} \rightarrow \widetilde{X_{2}}$ so that $p_{1}=p_{2} \circ f$.
(a) Classify all the covering spaces of S^{1} up to isomorphism.
(b) Find all homomorphisms between these covering spaces.

Solution. (a) Let $x_{0}=(1,0)$, then by Classification of Covering Spaces, the basepoint-preserving isomorphism classes of covering spaces of $\left(S^{1}, x_{0}\right)$ correspond to the subgroups of $\pi_{1}\left(S^{1}, x_{0}\right) \cong \mathbb{Z}$. Each nontrivial subgroup $m \mathbb{Z} \leq \mathbb{Z}$ corresponds to the covering space p_{m} : $\left(S^{1}, \widetilde{x_{0}}\right) \rightarrow\left(S^{1}, x_{0}\right)$, where $p_{m}(z)=z^{m}$ and $\widetilde{x_{0}}$ is an $m^{\text {th }}$ root of unity in $S^{1} \subset \mathbb{C}$. The trivial subgroup corresponds to the universal cover $p: \mathbb{R} \rightarrow S^{1}$ given by $p(s)=e^{i(2 \pi s)}$.
(b) Let $p_{m}:\left(S^{1}, \widetilde{x_{0}}\right) \rightarrow\left(S^{1}, x_{0}\right)$ and $p_{n}:\left(S^{1}, \widetilde{x_{1}}\right) \rightarrow\left(S^{1}, x_{0}\right)$ be covering spaces. Any homomorphism $f:\left(S^{1}, \widetilde{x_{0}}\right) \rightarrow\left(S^{1}, \widetilde{x_{1}}\right)$ must induce a homomorphism $f_{*}: \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{n}$. Such a homomorphism exists iff $m \mid n$,
and when $m \mid n, f_{*}$ is the natural injection $\mathbb{Z}_{m} \hookrightarrow \mathbb{Z}_{n}$. There can both be no homomorphism between universal cover $p: \mathbb{R} \rightarrow S^{1}$ to any of the finite-sheeted covering spaces mentioned above, as its fundamental group is trivial. Finally any homomorphism f from the universal cover to itself should be an isomorphism (by the Lifting Criterion) which satisfies $p \circ f=p$. Since $p(s)=e^{i(2 \pi s)}, f$ has to be of the form $s \mapsto s+k$, where k is a integer.
3. Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be topological spaces.
(a) Show that $\pi_{1}\left(X \times Y,\left(x_{0}, y_{0}\right)\right) \cong \pi_{1}\left(X, x_{0}\right) \times \pi_{1}\left(Y, y_{0}\right)$. [Hint: Use the projection maps $p_{1}: X \times Y \rightarrow X$ and $p_{2}: X \times Y \rightarrow Y$.]
(b) Compute the fundamental group of the solid torus.

Solution. (a) Please see Theorem 60.1 (Page 371) in Munkres.
(b) The solid torus $X \approx D^{2} \times S^{1}$. Hence $\pi_{1}(X) \approx \pi_{1}\left(D^{2}\right) \times \pi_{1}\left(S^{1}\right)$, from part(a). Since D^{2} is simply connected, we have that $\pi_{1}(X) \cong \mathbb{Z}$.
4. Find all 2-sheeted covering spaces of the torus $S^{1} \times S^{1}$ up to isomorphism.

Solution. By the Classification of Covering Spaces, the isomorphism class of any 2 -sheeted covering space will correspond to a subgroup to $\pi_{1}\left(S^{1} \times S^{1}\right) \cong \mathbb{Z}^{2}$ of index 2 . The two obvious nontrivial subgroups are $2 \mathbb{Z} \times \mathbb{Z}$ and $\mathbb{Z} \times 2 \mathbb{Z}$, which correspond to the coverings $z^{2} \times w$: $S^{1} \times S^{1} \rightarrow S^{1} \times S^{1}$ and $z \times w^{2}: S^{1} \times S^{1} \rightarrow S^{1} \times S^{1}$ respectively.

There is only one other nontrivial subgroup. Before we describe this subgroup, note that any such subgroup will be isomorphic to the kernel of a homomorphism $\mathbb{Z}^{2} \rightarrow \mathbb{Z}_{2}$. The third nontrivial subgroup is isomorphic to the kernel of the homomorphism that maps both of the standard generators of \mathbb{Z}^{2} to $1 \in \mathbb{Z}_{2}$. Explicitly, this subgroup can be described as $\left\{(x, y) \in \mathbb{Z}^{2} \mid x+y(\bmod 2)=0\right\}$. Can you describe the covering space this subgroup corresponds to?
5. Consider the real projective n-space $\mathbb{R} P^{n}$ obtained by identifying each point $x \in S^{n}$ with its antipode $-x$.
(a) Compute its fundamental group.
(b) Find all its covering spaces up to isomorphism.
(c) Show that every map from $\mathbb{R} P^{2} \rightarrow S^{1}$ is nullhomotopic.

Solution. (a) We know from class that the quotient map $q: S^{n} \rightarrow \mathbb{R} P^{n}$ for ($n \geq 2$) is a 2-fold universal covering space. (Note that we are assuming here that S^{n} is simply connected.) Therefore, the lifting correspondence is bijective, and consequently, $\pi_{1}\left(\mathbb{R} P^{n}\right)$ is a group that has exactly 2 elements. Therefore, $\pi_{1}\left(\mathbb{R} P^{n}\right) \cong \mathbb{Z}_{2}$.
(b) Up to isomorphism, any covering space of $\mathbb{R} P^{n}$ will correspond to a subgroup to \mathbb{Z}_{2}. As the only subgroups of \mathbb{Z}_{2} are itself and the trivial group, they will correspond to the covering spaces of $i d: \mathbb{R} P^{2} \rightarrow$ $\mathbb{R} P^{2}$ and $q: S^{n} \rightarrow \mathbb{R} P^{n}$ (which in this case is the universal cover) respectively.
(c) Suppose that $f: \mathbb{R} P^{2} \rightarrow S^{1}$ is a continuous map. Then it induces a homomorphism $h_{*}: \pi_{1}\left(\mathbb{R} P^{2}\right) \cong \mathbb{Z}_{2} \rightarrow \pi_{1}\left(S^{1}\right) \cong \mathbb{Z}$, which has be trivial. By the Lifting Criterion, f lifts to a map $\tilde{f}: \mathbb{R} P^{2} \rightarrow \mathbb{R}$ such that $p \circ \widetilde{f}=f$, where $p: \mathbb{R} \rightarrow S^{1}$ is the standard universal covering. Since \mathbb{R} is contractible, f has be homotopic (via some H) to a constant map. Hence $p \circ H$ is a homotopy from f to a constant map.
6. Let $r: S^{1} \rightarrow S^{1}$ be a reflection of the circle (e.g. $(x, y) \rightarrow(-x, y)$ in the plane). The Klein bottle K is the quotient space of $[0,1] \times S^{1}$ under the following equivalence relation: $(0, z) \sim(1, r(z))$ for all $z \in S^{1}$, and (t, z) is not equivalent to anything except itself, for $t=0,1$.
(a) Explain why K is compact.
(b) Let $C_{1} \subset K$ be (the image of) the circle $1 \times S^{1}$, and let $C_{2} \subset K$ be a small embedded circle inside $\left(\frac{1}{2}, \frac{3}{2}\right) \times S^{1}$. There is a continuous map $g: K \rightarrow \mathbb{R}^{3}$ such that $\left.g\right|_{K-C_{1}}$ and $\left.g\right|_{K-C_{2}}$ are injective. Assuming g exists as described, use Urysohn's Lemma to construct a continuous map of K into $\mathbb{R}^{4}=\mathbb{R}^{3} \times \mathbb{R}$, which is an imbedding.

Solution. (a) Since the quotient map is a continuous map, and $[0,1] \times$ S^{1} is compact, it follows that K has to be compact.
(b) Since K is Hausdorff and $C_{1}, C_{2} \approx S^{1}$, they have to be closed sets in K. As K is also compact, it is a normal space. By Urysohn's Lemma, we obtain a function $f: K \rightarrow[0,1]$ such that $f\left(C_{1}\right)=\{0\}$ and $f\left(C_{2}\right)=\{1\}$. Composing f with the inclusion $[0,1] \hookrightarrow \mathbb{R}$, we obtain a function $f^{\prime}: K \rightarrow \mathbb{R}$ such that $f^{\prime}\left(C_{1}\right)=\{0\}$ and $f^{\prime}\left(C_{2}\right)=\{1\}$.

Now define $h: K \rightarrow \mathbb{R}^{3} \times \mathbb{R}$ by $h(x)=\left(g(x), f^{\prime}(x)\right)$. This is map is continuous, as it has continuous coordinate functions. Consider two distinct points $x, y \in K$. If both x and y are in C_{1} and C_{2} then $f^{\prime}(x) \neq f^{\prime}(y)$, and so $h(x) \neq h(y)$. Without loss of generality, if we assume that C_{1} does not contain x or y, then $x, y \in K \backslash C_{1}$, and g is injective on this subset. Hence $g(x) \neq g(y)$, and so $h(x) \neq h(y)$.
Finally, h is a continuous and injective map from a compact space to a Hausdorff space. This implies that h has to be an imbedding.
7. Let $h, k:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ be continuous maps.
(a) If $h \simeq k($ via $H)$ such that $H\left(x_{0}, t\right)=y_{0}$ for all t, then show that $h_{*}=k_{*}$.
(b) Using (a) show that the inclusion $j: S^{n} \rightarrow R^{n+1} \backslash\{0\}$ induces an isomorphism of fundamental groups. [Hint: Use the natural retraction map $\left.r: R^{n+1} \backslash\{0\} \rightarrow S^{n}\right]$.

Solution. Please see Lemma 58.2 and Theorem 58.2 (Page 360) from Munkres.
8. [Bonus] Let $f:\left(S^{1}, x_{0}\right) \rightarrow\left(S^{1}, x_{1}\right)$ be a continuous map. Then the induced homomorphism $f_{*}: \pi_{1}\left(S^{1}, x_{0}\right)(\cong \mathbb{Z}) \rightarrow \pi_{1}\left(S^{1}, x_{1}\right)(\cong \mathbb{Z})$ is completely determined by the integer d given by $f_{*}\left(\left[\alpha_{0}\right]\right)=d\left[\alpha_{1}\right]$, where [α_{i}] is a generator $\pi_{1}\left(S^{1}, x_{i}\right)$ (for $\left.i=0,1\right)$ that represents $1 \in \mathbb{Z}$. This integer d is called the degree of f (denoted by $\operatorname{deg}(f)$).
(a) Show that if $f \simeq g$, then $\operatorname{deg}(f)=\operatorname{deg}(g)$.
(b) Show that if f is a homeomorphism, then $\operatorname{deg}(f)= \pm 1$. In particular, show that the $\operatorname{deg}(a)=-1$, when a is the antipodal map.

Solution. (a) Note that $\operatorname{deg}(f)$ is independent of basepoint, for if we choose a different basepoint $y_{0} \in X$ with $f\left(y_{0}\right)=y_{1}$, then there exists isomorphisms $\hat{\alpha}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ and $\hat{\beta}: \pi_{1}\left(X, x_{1}\right) \rightarrow \pi_{1}\left(Y, y_{1}\right)$ such that $f_{*} \circ \hat{\alpha}=\hat{\beta} \circ f_{*}$. Since any continuous map $f: S^{1} \rightarrow S^{1}$ has to be a loop, it follows from $7\left(\right.$ a) that $f_{*}=g_{*}$, and consequently $\operatorname{deg}(f)=\operatorname{deg}(g)$.
(b) To prove (b), we show first that $\operatorname{deg}(f \circ g)=\operatorname{deg}(f) \cdot \operatorname{deg}(g)$. But this follows directly from the fact that $(f \circ g)_{*}=f_{*} \circ g_{*}$. Also, by definition
$\operatorname{deg}(i d)=1$, as it induces the identity homomorphism. Therefore, if f is a homeomorphism, then $\operatorname{deg}(f) \cdot \operatorname{deg}\left(f^{-1}\right)=1$. As $\operatorname{deg}(f)$ is an integer, we have that $\operatorname{deg}(f)= \pm 1$. Finally, since a is a homeormorphism that is non-homotopic to f, we conclude that $\operatorname{deg}(a)=-1$.

